Extended scenarios for glacier melt due to anthropogenic forcing

نویسندگان

  • T. M. L. Wigley
  • S. C. B. Raper
چکیده

[1] The IPCC Third Assessment Report (TAR) developed a formula for the global meltwater contribution to sea level rise from Glaciers and Small Ice Caps (GSICs) that is applicable out to 2100. We show that, if applied to times beyond 2100 (as is necessary to assess sea level rise for concentration-stabilization scenarios), the formula imposes an unrealistic upper bound on GSIC melt. A modification is introduced that allows the formula to be extended beyond 2100 with asymptotic melt equal to the initially available ice volume (V0). The modification has a negligible effect on the original TAR formulation out to 2100 and provides support for the IPCC method over this time period. We examine the sensitivity of GSIC melt to uncertainties in V0 and mass balance sensitivity, and give results for a range of CO2 concentration stabilization cases. Approximately 73–94% of GSIC ice is lost by 2400. Citation: Wigley, T. M. L., and S. C. B. Raper (2005), Extended scenarios for glacier melt due to anthropogenic forcing, Geophys. Res. Lett., 32, L05704, doi:10.1029/ 2004GL021238.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Submarine melt rate estimates for floating termini of Greenland outlet glaciers (2000–2010)

The rate of mass loss from the Greenland ice sheet has increased over the past decade due, in large part, to changes in marine-terminating outlet glacier dynamics. These changes are attributed to increased submarine melt rates of floating ice tongues and submerged calving faces resulting from increased coastal ocean heat transport. We use remotely sensed data to calculate submarine melt rates f...

متن کامل

Contributions of natural and anthropogenic radiative forcing to mass loss of Northern Hemisphere mountain glaciers and quantifying their uncertainties

Observational evidence indicates that a number of glaciers have lost mass in the past. Given that glaciers are highly impacted by the surrounding climate, human-influenced global warming may be partly responsible for mass loss. However, previous research studies have been limited to analyzing the past several decades, and it remains unclear whether past glacier mass losses are within the range ...

متن کامل

Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings

Black carbon (BC) and dust deposited on snow and glacier surfaces can reduce the surface albedo, accelerate snow and ice melt, and trigger albedo feedback. Assessing BC and dust concentrations in snow and ice in the Himalaya is of interest because this region borders large BC and dust sources, and seasonal snow and glacier ice in this region are an important source of water resources. Snow and ...

متن کامل

Estimating Spring Terminus Submarine Melt Rates at a Greenlandic Tidewater Glacier Using Satellite Imagery

Oceanic forcing of the Greenland Ice Sheet is believed to promote widespread thinning at tidewater glaciers, with submarine melting proposed as a potential trigger of increased glacier calving, retreat, and subsequent acceleration. The precise mechanism(s) driving glacier instability, however, remain poorly understood, and while increasing evidence points to the importance of submarine melting,...

متن کامل

The Changing Impact of Snow Conditions and Refreezing on the Mass Balance of an Idealized Svalbard Glacier

Glacier surface melt and runoff depend strongly on seasonal and perennial snow (firn) conditions. Not only does the presence of snow and firn directly affect melt rates by reflecting solar radiation, it may also act as a buffer against mass loss by storing melt water in refrozen or liquid form. In Svalbard, ongoing and projected amplified climate change with respect to the global mean change ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005